Tissue factor is induced by resistin in human coronary artery endothelial cells by the NF-ĸB-dependent pathway.
نویسندگان
چکیده
OBJECTIVE Atherosclerosis is characterized by endothelial inflammation and dysfunction. Adipose tissue has increasingly been recognized as an active endocrine organ secreting so-called adipokines. Among these, resistin--recently described, but not yet extensively studied--has been defined as a novel inflammatory marker in atherosclerosis. The pathophysiology underlying this interplay, however, remains to be fully characterized. The aim of the study is to determine whether resistin might affect prothrombotic characteristics of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS Incubation of HCAECs with resistin caused upregulation of tissue factor (TF) expression as demonstrated by FACS analysis. Moreover, TF activity was induced in a dose-dependent manner, as shown by real-time PCR and colorimetric assay. Resistin-induced TF expression was mediated by oxygen free radicals through the activation of the transcription factor nuclear factor-κB (NF-κB), as demonstrated by electrophoretic mobility shift assay and by suppression of TF expression by superoxide dismutase, catalase, and the NF-κB inhibitors PDTC and BAY 11-7082. CONCLUSIONS These data confirm the hypothesis that resistin may contribute to atherothrombosis, exerting direct effects on HCAECs by promoting TF expression; thus, it represents an effector molecule able to induce a prothrombotic phenotype in cells present in the vessel wall.
منابع مشابه
Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملMelatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways
Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...
متن کاملHyperglycemia- Induced NF-κB Activation Increases microRNA-146a Expression in Human Umbilical Vein Endothelial Cells
Background & objectives: Nuclear Factor kappa B (NF-κB), a master switch transcription factor, plays a critical role in the progression and development of hyperglycemia-induced microangiopathy. Hyperglycemia activates NF-κB, and subsequently increases pro-inflammatory cytokines such as TNF-α, IL-6 and IL-1β leading to development of inflammation. Some new studies have revealed the involvement o...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vascular research
دوره 48 1 شماره
صفحات -
تاریخ انتشار 2011